到处都是Unix的胎记
一说起Unix编程,不必多说,最著名的系统调用就是fork,pipe,exec,kill或是socket了(fork(2)
, execve(2)
, pipe(2)
, socketpair(2)
, select(2)
, kill(2)
, sigaction(2)
)这些系统调用都像是Unix编程的胎记或签名一样,表明着它来自于Unix。
下面这篇文章,将向大家展示Unix下最经典的socket的编程例子——使用fork + socket来创建一个TCP/IP的服务程序。这个编程模式很简单,首先是创建Socket,然后把其绑定在某个IP和Port上上侦听连接,接下来的一般做法是使用一个fork创建一个client服务进程再加上一个死循环用于处理和client的交互。这个模式是Unix下最经典的Socket编程例子。
下面,让我们看看用C,Ruby,Python,Perl,PHP和Haskell来实现这一例子,你会发现这些例子中的Unix的胎记。如果你想知道这些例子中的技术细节,那么,向你推荐两本经典书——《Unix高级环境编程》和《Unix网络编程》。
C语言
我们先来看一下经典的C是怎么实现的。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 | /** * A simple preforking echo server in C. * * Building: * * $ gcc -Wall -o echo echo.c * * Usage: * * $ ./echo * * ~ then in another terminal ... ~ * * $ echo 'Hello, world!' | nc localhost 4242 * */ #include <unistd.h> /* fork, close */ #include <stdlib.h> /* exit */ #include <string.h> /* strlen */ #include <stdio.h> /* perror, fdopen, fgets */ #include <sys/socket.h> #include <sys/wait.h> /* waitpid */ #include <netdb.h> /* getaddrinfo */ #define die(msg) do { perror(msg); exit(EXIT_FAILURE); } while (0) #define PORT "4242" #define NUM_CHILDREN 3 #define MAXLEN 1024 int readline( int fd, char *buf, int maxlen); // forward declaration int main( int argc, char ** argv) { int i, n, sockfd, clientfd; int yes = 1; // used in setsockopt(2) struct addrinfo *ai; struct sockaddr_in *client; socklen_t client_t; pid_t cpid; // child pid char line[MAXLEN]; char cpid_s[32]; char welcome[32]; /* Create a socket and get its file descriptor -- socket(2) */ sockfd = socket(AF_INET, SOCK_STREAM, 0); if (sockfd == -1) { die( "Couldn't create a socket" ); } /* Prevents those dreaded "Address already in use" errors */ if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, ( const void *)&yes, sizeof ( int )) == -1) { die( "Couldn't setsockopt" ); } /* Fill the address info struct (host + port) -- getaddrinfo(3) */ if (getaddrinfo(NULL, PORT, NULL, &ai) != 0) { die( "Couldn't get address" ); } /* Assign address to this socket's fd */ if (bind(sockfd, ai->ai_addr, ai->ai_addrlen) != 0) { die( "Couldn't bind socket to address" ); } /* Free the memory used by our address info struct */ freeaddrinfo(ai); /* Mark this socket as able to accept incoming connections */ if (listen(sockfd, 10) == -1) { die( "Couldn't make socket listen" ); } /* Fork you some child processes. */ for (i = 0; i < NUM_CHILDREN; i++) { cpid = fork(); if (cpid == -1) { die( "Couldn't fork" ); } if (cpid == 0) { // We're in the child ... for (;;) { // Run forever ... /* Necessary initialization for accept(2) */ client_t = sizeof client; /* Blocks! */ clientfd = accept(sockfd, ( struct sockaddr *)&client, &client_t); if (clientfd == -1) { die( "Couldn't accept a connection" ); } /* Send a welcome message/prompt */ bzero(cpid_s, 32); bzero(welcome, 32); sprintf (cpid_s, "%d" , getpid()); sprintf (welcome, "Child %s echo> " , cpid_s); send(clientfd, welcome, strlen (welcome), 0); /* Read a line from the client socket ... */ n = readline(clientfd, line, MAXLEN); if (n == -1) { die( "Couldn't read line from connection" ); } /* ... and echo it back */ send(clientfd, line, n, 0); /* Clean up the client socket */ close(clientfd); } } } /* Sit back and wait for all child processes to exit */ while (waitpid(-1, NULL, 0) > 0); /* Close up our socket */ close(sockfd); return 0; } /** * Simple utility function that reads a line from a file descriptor fd, * up to maxlen bytes -- ripped from Unix Network Programming, Stevens. */ int readline( int fd, char *buf, int maxlen) { int n, rc; char c; for (n = 1; n < maxlen; n++) { if ((rc = read(fd, &c, 1)) == 1) { *buf++ = c; if (c == '\n' ) break ; } else if (rc == 0) { if (n == 1) return 0; // EOF, no data read else break ; // EOF, read some data } else return -1; // error } *buf = '\0' ; // null-terminate return n; } |
Ruby
下面是Ruby,你可以看到其中的fork
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | # simple preforking echo server in Ruby require 'socket' # Create a socket, bind it to localhost:4242, and start listening. # Runs once in the parent; all forked children inherit the socket's # file descriptor. acceptor = Socket. new (Socket:: AF_INET , Socket:: SOCK_STREAM , 0 ) address = Socket.pack_sockaddr_in( 4242 , 'localhost' ) acceptor.bind(address) acceptor.listen( 10 ) # Close the socket when we exit the parent or any child process. This # only closes the file descriptor in the calling process, it does not # take the socket out of the listening state (until the last fd is # closed). # # The trap is guaranteed to happen, and guaranteed to happen only # once, right before the process exits for any reason (unless # it's terminated with a SIGKILL). trap( 'EXIT' ) { acceptor.close } # Fork you some child processes. In the parent, the call to fork # returns immediately with the pid of the child process; fork never # returns in the child because we exit at the end of the block. 3 .times do fork do # now we're in the child process; trap (Ctrl-C) interrupts and # exit immediately instead of dumping stack to stderr. trap( 'INT' ) { exit } puts "child #$$ accepting on shared socket (localhost:4242)" loop { # This is where the magic happens. accept(2) blocks until a # new connection is ready to be dequeued. socket, addr = acceptor.accept socket.write "child #$$ echo> " socket.flush message = socket.gets socket.write message socket.close puts "child #$$ echo'd: '#{message.strip}'" } exit end end # Trap (Ctrl-C) interrupts, write a note, and exit immediately # in parent. This trap is not inherited by the forks because it # runs after forking has commenced. trap( 'INT' ) { puts "\nbailing" ; exit } # Sit back and wait for all child processes to exit. Process.waitall |
Python
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | """ Simple preforking echo server in Python. """ import os import sys import socket # Create a socket, bind it to localhost:4242, and start # listening. Runs once in the parent; all forked children # inherit the socket's file descriptor. acceptor = socket.socket() acceptor.bind(( 'localhost' , 4242 )) acceptor.listen( 10 ) # Ryan's Ruby code here traps EXIT and closes the socket. This # isn't required in Python; the socket will be closed when the # socket object gets garbage collected. # Fork you some child processes. In the parent, the call to # fork returns immediately with the pid of the child process; # fork never returns in the child because we exit at the end # of the block. for i in range ( 3 ): pid = os.fork() # os.fork() returns 0 in the child process and the child's # process id in the parent. So if pid == 0 then we're in # the child process. if pid = = 0 : # now we're in the child process; trap (Ctrl-C) # interrupts by catching KeyboardInterrupt) and exit # immediately instead of dumping stack to stderr. childpid = os.getpid() print "Child %s listening on localhost:4242" % childpid try : while 1 : # This is where the magic happens. accept(2) # blocks until a new connection is ready to be # dequeued. conn, addr = acceptor.accept() # For easier use, turn the socket connection # into a file-like object. flo = conn.makefile() flo.write( 'Child %s echo> ' % childpid) flo.flush() message = flo.readline() flo.write(message) flo.close() conn.close() print "Child %s echo'd: %r" % \ (childpid, message.strip()) except KeyboardInterrupt: sys.exit() # Sit back and wait for all child processes to exit. # # Trap interrupts, write a note, and exit immediately in # parent. This trap is not inherited by the forks because it # runs after forking has commenced. try : os.waitpid( - 1 , 0 ) except KeyboardInterrupt: print "\nbailing" sys.exit() |
Perl
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | #!/usr/bin/perl use 5.010; use strict; # simple preforking echo server in Perl use Proc:: Fork ; use IO:: Socket ::INET; sub strip { s/\A\s+//, s/\s+\z// for my @r = @_ ; @r } # Create a socket, bind it to localhost:4242, and start listening. # Runs once in the parent; all forked children inherit the socket's # file descriptor. my $acceptor = IO:: Socket ::INET->new( LocalPort => 4242, Reuse => 1, Listen => 10, ) or die "Couln't start server: $!\n" ; # Close the socket when we exit the parent or any child process. This # only closes the file descriptor in the calling process, it does not # take the socket out of the listening state (until the last fd is # closed). END { $acceptor -> close } # Fork you some child processes. The code after the run_fork block runs # in all process, but because the child block ends in an exit call, only # the parent executes the rest of the program. If a parent block were # specified here, it would be invoked in the parent only, and passed the # PID of the child process. for ( 1 .. 3 ) { run_fork { child { while (1) { my $socket = $acceptor -> accept ; $socket ->printflush( "child $$ echo> " ); my $message = $socket ->getline; $socket -> print ( $message ); $socket -> close ; say "child $$ echo'd: '${\strip $message}'" ; } exit ; } } } # Trap (Ctrl-C) interrupts, write a note, and exit immediately # in parent. This trap is not inherited by the forks because it # runs after forking has commenced. $SIG { 'INT' } = sub { print "bailing\n" ; exit }; # Sit back and wait for all child processes to exit. 1 while 0 < waitpid -1, 0; |
PHP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | <? /* Simple preforking echo server in PHP. Russell Beattie (russellbeattie.com) */ /* Allow the script to hang around waiting for connections. */ set_time_limit(0); # Create a socket, bind it to localhost:4242, and start # listening. Runs once in the parent; all forked children # inherit the socket's file descriptor. $socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP); socket_bind( $socket , 'localhost' , 4242); socket_listen( $socket , 10); pcntl_signal(SIGTERM, 'shutdown' ); pcntl_signal(SIGINT, 'shutdown' ); function shutdown( $signal ){ global $socket ; socket_close( $socket ); exit (); } # Fork you some child processes. In the parent, the call to # fork returns immediately with the pid of the child process; # fork never returns in the child because we exit at the end # of the block. for ( $x = 1; $x <= 3; $x ++){ $pid = pcntl_fork(); # pcntl_fork() returns 0 in the child process and the child's # process id in the parent. So if $pid == 0 then we're in # the child process. if ( $pid == 0){ $childpid = posix_getpid(); echo "Child $childpid listening on localhost:4242 \n" ; while (true){ # This is where the magic happens. accept(2) # blocks until a new connection is ready to be # dequeued. $conn = socket_accept( $socket ); $message = socket_read( $conn ,1000,PHP_NORMAL_READ); socket_write( $conn , "Child $childpid echo> $message" ); socket_close( $conn ); echo "Child $childpid echo'd: $message \n" ; } } } # # Trap interrupts, write a note, and exit immediately in # parent. This trap is not inherited by the forks because it # runs after forking has commenced. try { pcntl_waitpid(-1, $status ); } catch (Exception $e ) { echo "bailing \n" ; exit (); } |
Haskell
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | import Network import Prelude hiding ((-)) import Control.Monad import System.IO import Control.Applicative import System.Posix import System.Exit import System.Posix.Signals main :: IO () main = with =<< (listenOn - PortNumber 4242) where with socket = do replicateM 3 - forkProcess work wait where work = do installHandler sigINT (Catch trap_int) Nothing pid <- show <$> getProcessID puts - "child " ++ pid ++ " accepting on shared socket (localhost:4242)" forever - do (h, _, _) <- accept socket let write = hPutStr h flush = hFlush h getline = hGetLine h close = hClose h write - "child " ++ pid ++ " echo> " flush message <- getline write - message ++ "\n" puts - "child " ++ pid ++ " echo'd: '" ++ message ++ "'" close wait = forever - do ( const () <$> getAnyProcessStatus True True ) `catch` const trap_exit trap_int = exitImmediately ExitSuccess trap_exit = do puts "\nbailing" sClose socket exitSuccess puts = putStrLn (-) = ($) infixr 0 - |
如果你知道更多的,请你告诉我们。(全文完)